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Abstract-The effect of variable properties on free convection in a shahow cavity with d~ff~re~t~ally heated 
end walls has been analytically studied. Compared to the results for the linear theory the Boussinesq 
approximation usually applied is exact, if the fluid properties are taken at the arithmetic mean between 
the hot and cold temperature at the end walls. For the parameter range considered the deviation between 
the results for the quadratic theory and the Boussinesq approximation is less than approximately 2.5%. 
Hence, it has been demonstrated that the arithmetic mean is a reasonable choice. With this reference 

temperature the Boussinesq approximation leads to sufficiently accurate rest&s. 

1 m INTRODUCTION 

IN THEORETICAL studies on free convection problems 
the Boussinesq approximation is usually applied ; i.e. 
all properties are taken as constant except the density 
in the buoyancy term in the equation of motion. 

For external flows, some work has been carried out 
on the effect of variable properties on the momentum 
and heat transport and, hence, on the deviation from 
the Boussinesq approximation. Free convection heat 
transfer with variable properties on a vertical plate 
has been studied by Sparrow and Gregg [I], Fujii et 
al. [Z], Miyamoto [3], Carey and Mollendorf [4, 51, 
Herwig et al. [6], and Herwig [7]. From these studies 
it follows that the effect of variable properties can be 
taken into account either by applying the so-called 
reference-temperut~re concept, i.e. taking the prop- 
erties at 

T, = T,+v(T,--TJ (1) 

and calculating the heat transfer from the Boussinesq 
solution (i.e. for constant properties) or by applying 
the property-ratio concept 

where Nus is the Nusselt number from the Boussinesq 
solution. The constant v in equation (1) can be any 
value between 0 and 1. The exponents ui in equation 
(2) are in general functions of the properties them- 
selves, especially of the Prandtl number. These 
coefficients can be determined by analytical or numeri- 
cal solution of the governing equation, and, in prin- 
ciple, also by carrying out an experimental study. 

In opposition of these studies, very Iittle work has 
been done on the effect of variable properties on free 
convection in cavities. Gray and Giorgini [S] have 
considered the effect of variable properties on the 
onset of convection in a horizontal fluid layer heated 

from below (Rayleigh-Btnard problem) by estimating 
the order of magnitude of each term appearing in the 
governing equations. Yamasaki and Irvine [9] studied 
the effect of variable viscosity on the free convection 
in a heated vertical pipe by solving the governing 
equation numerically. Their results show that the heat 
transfer rate is considerably improved when taking 
the variable viscosity into account. 

Free convection in a shallow cavity with differently 
heated end walls and constant properties has been 
widely studied by Cormack et al. [lo, 111, Imberger 
[12] and Bejan and Tien fI3J. Accordingly, besides 
the analytical and numerical results also experimental 
data are known for this particular geometry. As an 
analytical study has the essential advantage of per- 
mitting a ‘deeper look’ into the physical and math- 
ematical context of the problem, we have chosen this 
particular geometry for our study. Finally, we have 
carried out an analytical solution for free convection 
with variable properties using the method of asymp- 
totic expansion. By comparing our results with those 
mentioned above, we discuss the effect of variable 
properties and, hence, deviations from the Boussinesq 
approximation. 

2. MATHEMATICAL FORMULATION 

Figure 1 shows a schematic sketch of the shallow 
cavity. The end wails are held at constant but different 
temperatures, the lower and the upper wall are adia- 
batic. Due to the horizontal temperature difference 
and uni-cellular flow is induced ; the resulting velocity 
and temperature profile in the core region is also 
shown in Fig. 1. 

Energy and momentum transport in the fluid are 
described by the equation ofcontinuity 

the equations of motion 
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NOMENCLATURE 

a thermal diffusivity [m’ s- ‘1 0 dimensionless temperature [-_I 

CP heat capacity J kg- ’ Km ’ A thermal conductivity [W K- ’ m- ‘1 

9 gravitational acceleration constant [m s- ‘1 v kinematic viscosity [m’ s- ‘1 
h cavity height [m] P density [kg m- ‘1 
1 cavity length [m] * stream function [-I. 

n, exponents in equations (2) and (37) [-_I 

P pressure [N mm *] Dimensionless groups 
T temperature [K] A cavity aspect ratio 
u, u horizontal and vertical velocity Gr Grashof number 

components [m s- ‘1 Km, dimensionless property of the second kind 
x,y horizontal and vertical coordinates [ml. Nu Nusselt number 

Pr Prandtl number. 

Greek symbols 

B coefficient in thermal expansion [Km ‘1 Subscripts 

V factor in equation (1) [-_I B Boussinesq approximation 

& non-dimensional temperature C cold 

(perturbation parameter) [-_I H hot 

V dynamic viscosity [Pa s] R reference state. 

core end 

GrPrpc, A%: +Aug 
aY I 

J, Jconst 
adiabatic as well as by the boundary conditions 

x=0: u=v=o, e = 8, 

(6) 

FIG. 1. Schematic sketch of the shallow cavity with velocity 
and temperature profiles in the core region. x= 1: u=v=o, % = Q,, 

de (7) 
y=O,l. u=2, E-=0. 

aY 

Grp A*trE +Av@ 
aY 1 Equations (3)-(6) have already been made dimen- 

sionless with the reference numbers given in Table 1. 

= -Grg +A& 
i 

2Aqg - iqdivv 1 
The properties have been related to those taken at a 
certain reference temperature. As dimensionless 
groups show up the Grashof number, Gr = p,u,h/q,, 

the Prandtl number, Pr = vR/uR, and the cavity aspect 

+ $[v$ +A$j (4) 
ratio A = h/L. The properties appearing in the 
Grashof and Prandtl numbers are taken at a certain 
reference temperature T,. 

The temperature dependence of the variable prop- 
Grp AbE +A2vV 

aY 1 erties are taken into account by expanding them into 
a Taylor series fixed at a certain reference state. 

= -Gr$ +Aa 2qg - iqdivv 1 
Neglecting terms with order higher than two, one 

obtains, e.g. for the density 

ay 

and the equation of thermal energy Defining dimensionless properties of the ‘second kind’ 



Free convection in a shallow cavity with variable properties-l. Newtonian fluid 1827 

Table 1. Dimensionless variables and properties 

x Y u v P e P 1 1 cp 

X* Y* u* v* P* T-T, p* q* 1* cp’ _____--- 
1 h AuR AuR PRU; TH-TK PR VR & CPU 

Table 2. Dimensionless properties of the second kind for water and air at 70°C 

Water -0.205 -4.149 0.493 0.045 -0.609 38.61 - 1.981 0.262 
Air -1.0 0.722 0.882 -0.187 2.0 -0.382 -0.382 1.430 

and an expansion parameter 

Tu-Tc 

e=TR 
(11) 

one obtains from equation (8) 

p = 1 +aK,,B+ ;&JP. (12) 

Similar to this, one obtains for the other properties 

Tj = 1 +EKv,B+ ;K,?B’ (13) 

1 = 1 +EKA,e+ ;K&tP (14) 

CP = 1 feK<,&- &>B’. (15) 

Table 2 shows values for the properties of the 
second kind for water and air at TR = 70°C according 
to Gersten and Herwig [14]. In the present study we 
have chosen as reference temperature the arithmetic 
mean between the end wall temperatures 

T 

R 
= Tc+T, 

2 (164 

as well as the temperature of the cold end wall 

TR = T,. (16b) 

As there is no characteristic reference velocity uR in 
free convection problems, we look at the buoyancy 
term. Substituting equation (12) into equation (5) 
leads to , 

g$(l-p)= -EE!$Y ( eKn,S+&P . (17) 
R R > 

Similar to the properties, the unknown quantities u, 
a, p and 0 were also expanded in asymptotic 
expressions, using E as a parameter. Hence 

u= u”+&U,+&%,+.~. (23) 

v = v,+&v,+e2v2+ “’ (24) 

p =Po+EP,+EZP2+ ... (25) 

0 = @,+&e,+E’e,+ . . . . (26) 

In the following we talk of linear theory, if expansions 
(23~(26) are broken off according to terms of O(E’) 
and of quadratic theory, if they are broken off accord- 
ing to O(E’). 

This relation shows that the buoyancy term is of Substituting the property expansions (12k( 15) as 

O(E), whereas all other terms in equation (5) are of 
O(1). Since the buoyancy term acts as generator for 
free convection, the reference velocity uR has to be 
chosen in such a way that the buoyancy term becomes 
of 0( 1) as E + 0. This demand yields 

Substituting this reference velocity into the Grashof 
number gives 

Gr= - 
p;Th3g$,, 

7: 
(19) 

Furthermore, considering 

&Kp, = -MTH-- Tc) (20) 

?R 
VR = - 

PR 
(21) 

one obtains finally the relation for the Grashof 
number 

Gr = gh3A(TH - Tc) 
4 (22) 

which is identical with the form usually used in free 
convection problems. 
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well as expansions (23)-(26) in the governing equa- 
tions and equating terms of like power in E, one 
obtains at O(E’) 

(27) 

Gr av0 au” A3u,- +A%,---- 
3X ay 1 

= -Gr~;~+A3~+A~+6, (29) 

GrPr A%,~ +,4ayf 1 =A’g + $. 

(301 

It is easily seen that this system of differential 
equations is identicai with that resulting from the 
Boussinesq approximation. The system at U(E’) is 
given in the Appendix. 

With the assumption that the cavity aspect ratio A is 
sufficiently small, the resulting systems of differential 
equations at O(E*), O(E’) and O(E*) can be solved 
using the asymptotic expansion method with the cav- 
ity aspect ratio A as the expansion parameter. 

3. ANALYTICAL Solution 

For two-dimensional problems one usually intro- 
duces the stream function 

@lb) 

which identically fulfills the continuity equation at 
each order of magnitude. By eliminating the pressure 
in equations (28) and (29), one obtains the vorticity 
equation. 

As already mentioned, one distinguishes between 
two different flow regions the core region and the two 
end regions close to the hot and cold end walls. For 
A + 0 equations (27)-(30) describe the flow in the core 
region. By solving these equations with the method of 
matched asymptotic expansions, some constants 
appear in the solution which must be determined. This 
is usually done by solving the equations for the end 
region and matching this solution with that for the 
core region. The equations valid in the end region are 
obtained from equations (27t(30) by stretching the 
x-coordinate by the factor A-‘, see Cormack ef al. 
[IO]. Cormack et al. solved the equations for the end 
region numerically. However, Merker and Lea1 [15] 

have shown that the core solution correct to 0(A2) 

can be obtained without knowing the end solution in 
detail. 

Finally, one obtains with T, = (T, f T&2 for the 
velocity u(x, y) 

and for the temperature 6 in the core region 
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+3K,,K$& -; +;)(9K;,--3~,d). 

(33) 

Knowing the velocity and temperature field in the 
core region, the Nusselt number can be determined. 
Since the lower and upper walls are adiabatic, the flow 
of enthalpy and heat must be constant at every cross- 
section of the cavity, hence 

Nu = ,I: -GrPrpuc,B 
> 

dy. (34) 

With T, = (T, + T,)/2 one obtains for the Nusselt 
number 

K4 
Nu = l+e2= + 

A2 Gr2 Pr2 

362 880 

x l+E2 
[ ( 

-SK~,K~,-~$K~, 
PI 

In addition to this, we also present the solution for 
the Nusselt number for T, = T, instead of r, = 

(Tc + Tu)/2 

KA, KA, 
Nu = l+y +E~~ + 

A2 Gr2 Pr2 
362880 

(36) 

The terms of 0(&O) in equations (35) and (36) are 
identical with the Boussinesq solution (equations (27) 
(30)) which has already been given by Cormack et al. 
The terms of O(E’) and O(E~) are corrections due to 
the temperature-dependent properties. It is interesting 
to note that no terms of O(E’) show up, if the arith- 
metic mean is chosen as the reference temperature. 
The solutions for the velocity and temperature field 
in the case TR = T, are given in the Appendix. 

The results are sometimes presented by using the 

property-ratio method, see Herwig [7]. But this can 
only be done, in case the corrections due to the vari- 
able properties are of O(E’), because only in this case 
are the exponents of the property ratios independent 
of the properties K,, of the second kind. Because there 
are no terms of O(E’) in the relation for the Nusselt 
number in the case T, = (T,+ TJ2, this solution 
cannot be presented by the property ratio method. 
However, one obtains in the case TR = TC 

PHBC 2K,2, -K&IKP, 

G= I+‘~ K,, 

A2 Gr’ Pr2 

n’ = -362880+A2 Gr2 Pr2 

181 440-Gr2 Pr2 A212 

n2= 362880+A2Gr2 Pr2 

n3 = 3n, 

n4 = {n,. 

Subscript B means ‘Boussinesq approximation’. 
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4. DISCUSSION 

The results of the study are presented in Figs. 2 and 
3 for a shallow cavity with aspect ratio A = 0.02. The 
graphs show the relative deviations of the Nusselt 
number from that obtained by applying the Bous- 
sinesq approximation, (Nu - Nu,)/Nu,, vs the par- 
ameter E = (TH- TJT,. The value E = 0.1 means 
a temperature difference of approximately 30 K 
between the hot and cold wall, if the arithmetic mean 
is close to the ambient temperature. Because the 
Grashof number is proportional to the temperature 
difference (TH - T,) if the cavity aspect ratio A is kept 
constant, the Grashof number can be used instead of E 
in Figs. 2 and 3. 

Gr 
4 3.0 104 

0.03 ;+p, 

A = 0.02 

0.02 - 

Nu-Nus 

NUB 

FIG. 2. Relative deviation between the Nusselt number for 
constant and variable properties vs the parameter E in the 
case TR = (Tc+ T,)/2 and for A = 0.02: 0, linear theory; 

0, quadratic theory. 

Gr 

E 

FIG. 3. Relative deviation between the Nusselt number for 
constant and variable properties vs the parameter E in the case 
TR = Tc and for A = 0.02 : 0, linear theory; 0, quadratic 

theory. 

Figure 2 presents the results for the case 
TR = (T,+ TJ2. It is interesting to note that the 
solution obtained is correct within the framework of 
the linear theory. The Nusselt numbers for water and 
air are slightly increased, if the quadratic terms are 
taken into account. But, this increase is rather small 
and is approximately 2.5% for Gr = 3 x lo4 or 
E = 0.10, respectively. 

Figure 3 shows the results for the case TR = T,. 

The curves marked @ represent the solution of the 
linear theory and those marked @ represent the quad- 
ratic theory. With TR = T,, the effect of the variable 
properties is opposite for water and air, i.e. the Nusselt 
number for water (linear theory) can be increased up 
to 42% and that one for air can be decreased down 
to 24%. If the quadratic terms are added, the devi- 
ation of the Nusselt number for water is further 
increased (up to 57%), that one for air, on the 
contrary, is slightly decreased. 

Summing up, the study presented shows that the 
arithmetic mean temperature is a reasonable choice 
for the reference temperature in the present problem. 
Using this reference temperature, the Boussinesq solu- 
tion is exact compared to the linear theory and is still 
very good (maximum deviations less than 2.5%) with 
the quadratic terms being added. Contrary to this, 
the deviation between the quadratic theory and the 
Boussinesq solution is rather high (up to about 50%) 
and, in addition, oppositely for water and air, in case 
the temperature of the cold side wall is chosen as the 
reference temperature. Hence, for cavity flow prob- 
lems it is suggested that the arithmetic mean tem- 
perature is used as reference temperature for the vari- 
able properties. 
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CONVECTION NATURELLE DANS UNE CAVITE PEU PROFONDE- 
1. FLUIDE NEWTONIEN 

R~um&-On etude analytiquement l’effet des proprietes variables sur la convection naturelle dans une 
cavite peu profonde avec parois d’extremite chauffees differemment. Par rapport aux r&hats de la thPorie 
linfiaire, l’approximation de Boussinesq usuellement appliqub est exacte si les prop&es du fluide sont 
prises a la temperature moyenne arithmetique entre oelles des parois chaude et froide. Pour le domaine de 
variation consider& la deviation entre les resultats pour la theorie quadrutique et ceux pour l’approximation 
de Boussinesq est inferieure a 2,5% environ. On montre que la moyenne arithmetique est un choix 
raisonnable. Avec cette temperature de reference, l’approximation de Boussinesq conduit a des r&hats 

suffisamment p&is. 

FREIE KONVEKTION IN EINEM FLACHEN BEHALTER MIT VARIABLEN 
STOFFWERTEN-1. NEWTONSCHES FLUID 

Zusammenfassung-Der Einflug variabler Stoffwerte aud die freie Konvektion in einem flachen Behalter 
mit unterschiedlich beheizten Stimflbhen wird analytisch untersucht. Wie die Ergebnisse zeigen, liefert 
die Boussinesq-Approximation im Vergleich mit der linemen Theorie eine exakte Losung, wenn die 
arithmetische Mitteltemperatur zwischen heiBer und kalter Stimflache ah Referenztemperatur verwendet 
wird. Im untersuchten Parameter-Bereich weicht die Boussinesq-L&sung urn maximal 2.5% von der 
“exakten Losung”, d.h. von der quadratischen Theorie ad. Damit its gezeigt, dal3 die arithmetische 
Mittletemperatur eine sinnvolle Bezugstemperatur fiir die Stoffwerte ist. Mit dieser Bezugstemperatur 

liefert die Boussinesq-Approximation hinreichend genaue Ergebnisse. 

ECTECTBEHHAJI KOHBEKIQDI C Yr4ETOM I-IEPEMEHHOCTH CBOfiCTB B MEJIKOH 
HOJIOCTM-1. HLIOTOHOBCKAX TMAKOCTb 

AmoTauna-npoeeneHo artanrrrmrecxoe riccnenonamie B~WRHUR nepeMeHHblx CBO~~CTB Ha ecTecTnew 

HyIo KOHBeKL,WO B MenKOii IIOnOCTH,TOpUeBbIe CTeHKB KOTOpOti IIOJUepXKaBaIOTCK npH pa3HOii TeMne- 

paType. Pe3ynbTaTbl J"lli nAHeiHOf4 TeMnepaTypHOii 3aBBCAMOCTB TO'iHO COBnaAaIOT C 06bI'iHO 

IlpHMeHReMbIM npw6nmceHneM 6yCcHHecKa,eme CBOiiCTBa XUAKOCTU 6epyrcr npa 3HaYeHBB TeMnepa- 

TypbI,KOTOpOe paBH0 CpenHe-apH~MeTHwcKoii TeMnepaType. B paccMaTpHBaeMoM mana30He R3MeHe- 

HWR napaMeTpon pacxomneHan MeXny pe3ynbTaTaMw, nonyvaeMbrm nmi TeMnepaTypHol 

3amcmfoCm, H IIpEi6nHXeHLieM IGyccxHecKa cocTannKeT MeHee 2,5%. IIoKa3aH0, ST0 npu6miXeHse 

6yccnHecKa npe BbI60pecpenHeapHf$MeTEi~ecKoi TeMnepaTypbl B KaqecTne xapaKTepHoii TeMnepaTypbx 

~aeTAOCTaTO'iHOTO'lHbIe~3ynbTaTbI. 


