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Abstract—The effect of variable properties on free convection in a shallow cavity with differentially heated

end walls has been analytically studied. Compared to the results for the /inear theory the Boussinesq

approximation usually applied is exact, if the fluid properties are taken at the arithmetic mean between

the hot and cold temperature at the end walls. For the parameter range considered the deviation between

the results for the quadratic theory and the Boussinesq approximation is less than approximately 2.5%.

Hence, it has been demonstrated that the arithmetic mean is a reasonable choice. With this reference
temperature the Boussinesq approximation leads to sufficiently accurate results.

1. INTRODUCTION

IN THEORETICAL studies on free convection problems
the Boussinesq approximation is usually applied; i.e.
all properties are taken as constant except the density
in the buoyancy term in the equation of motion.

For external flows, some work has been carried out
on the effect of variable properties on the momentum
and heat transport and, hence, on the deviation from
the Boussinesq approximation. Free convection heat
transfer with variable properties on a vertical plate
has been studied by Sparrow and Gregg [1], Fujii ez
al. {2], Miyamoto [3], Carey and Mollendorf [4, 5],
Herwig et al. [6}, and Herwig [7]. From these studies
it follows that the effect of variable properties can be
taken into account either by applying the so-called
reference-temperature concept, i.e. taking the prop-
erties at

Tp=To+v(Tw—Ty) (M

and calculating the heat transfer from the Boussinesq
solution (i.e. for constant properties) or by applying
the property-ratio concept
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where Nug is the Nusselt number from the Boussinesq
solution. The constant v in equation (1) can be any
value between 0 and 1. The exponents n, in equation
(2) are in general functions of the properties them-
selves, especially of the Prandtl number. These
coefficients can be determined by analytical or numeri-
cal solution of the governing equation, and, in prin-
ciple, also by carrying out an experimental study.

In opposition of these studies, very little work has
been done on the effect of variable properties on free
convection in cavities. Gray and Giorgini [8] have
considered the effect of variable properties on the
onset of convection in a horizontal fluid layer heated

from below (Rayleigh—Bénard problem) by estimating
the order of magnitude of each term appearing in the
governing equations. Yamasaki and Irvine [9] studied
the effect of variable viscosity on the free convection
in a heated vertical pipe by solving the governing
equation numerically. Their results show that the heat -
transfer rate is considerably improved when taking
the variable viscosity into account.

Free convection in a shallow cavity with differently
heated end walls and constant properties has been
widely studied by Cormack er al. [10, 11}, Imberger
{12] and Bejan and Tien [13]. Accordingly, besides
the analytical and numerical results also experimental
data are known for this particular geometry. As an
analytical study has the essential advantage of per-
mitting a ‘deeper look’ into the physical and math-
ematical context of the problem, we have chosen this
particular geometry for our study. Finally, we have
carried out an analytical solution for free convection
with variable properties using the method of asymp-
totic expansion. By comparing our results with those
mentioned above, we discuss the effect of variable
properties and, hence, deviations from the Boussinesq
approximation.

2. MATHEMATICAL FORMULATION

Figure 1 shows a schematic sketch of the shallow
cavity. The end walls are held at constant but different
temperatures, the lower and the upper wall are adia-
batic. Due to the horizontal temperature difference
and uni-cellular flow is induced ; the resulting velocity
and temperature profile in the core region is also
shown in Fig. 1.

Energy and momentum transport in the fluid are
described by the equation of continuity

d é
A P (pu)+ e (pr)=0 3)

the equations of motion
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a  thermal diffusivity [m?s~ ]

¢, heatcapacity Jkg”'K™'

g  gravitational acceleration constant [m s~ %]
h  cavity height [m]

I cavity length [m]

n;  exponents in equations (2) and (37) [—]

p  pressure [Nm~ %

T  temperature [K]

u,v horizontal and vertical velocity

components [m s~ ']
x,y horizontal and vertical coordinates [m].

Greek symbols
B coefficient in thermal expansion [K ']
v factor in equation (1) [—]
£ non-dimensional temperature
(perturbation parameter) [—]
n dynamic viscosity [Pa s]

NOMENCLATURE

0 dimensionless temperature [—]

A thermal conductivity [W K~ 'm™"]
v kinematic viscosity [m?s™ ']

p  density [kg m~?)

¥ stream function [—].

Dimensionless groups
A cavity aspect ratio
Gr  Grashof number
K,, dimensionless property of the second kind
Nu Nusselt number
Pr  Prandtl number.

Subscripts
B Boussinesq approximation
C cold
H hot

R reference state.
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FiG. 1. Schematic sketch of the shallow cavity with velocity
and temperature profiles in the core region.
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and the equation of thermal energy
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as well as by the boundary conditions

x=0 u=1v =0, 0 = 0c
x=1: u=v=0, 0 =0y

=0,1 = o0 =0 ”
y=0, U=1p= Fr

Equations (3)—(6) have already been made dimen-
sionless with the reference numbers given in Table 1.
The properties have been related to those taken at a
certain reference temperature. As dimensionless
groups show up the Grashof number, Gr = prugh/ng,
the Prandtl number, Pr = vy/ag, and the cavity aspect
ratio A = h/L. The properties appearing in the
Grashof and Prandtl numbers are taken at a certain
reference temperature 75.

The temperature dependence of the variable prop-
erties are taken into account by expanding them into
a Taylor series fixed at a certain reference state.

Neglecting terms with order higher than two, one
obtains, e.g. for the density

pX(T 0 T-T, (a2 ) T—TR)?
(T) = pr+ ( )+ T2 ( R

®)

Defining dimensionless properties of the ‘second kind’
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Table 1. Dimensionless variables and properties

x y u v §4 0 p n A <,
x* »* u* o* p* T—Tx p* ™ 1% C:
{ h Aug Aug PrUr Tu—Tx e e Ar R

Table 2. Dimensionless properties of the second kind for water and air at 70°C

K, K, K, K, K, K, K, K.,
Water —0205 —4749  0.493 0045 —0609 3861 —1981 0.262
Air —1.0 0.722 0.882 —0.187 2.0 —0.382 -0.382 1.430
T dp O(&), whereas all other terms in equation (5) are of
K, = ;67 = —BrTx ® O(1). Since the buoyancy term acts as generator for
free convection, the reference velocity uz has to be
T? 8% chosen in such a way that the buoyancy term becomes
K, = p 0T 10 of O(1) as ¢ —» 0. This demand yields
2
and an expansion parameter . — prh"gekK,, (18)
R= —————.
 Tu-Tc . TTx
&= T an Substituting this reference velocity into the Grashof
. . number gives
one obtains from equation (8)
213
¢? Gr = 0K (19)
p= 1+8Kp19+ Eszgz. (12) ;7% :
Similar to this, one obtains for the other properties Furthermore, considering
2 eK,, = —Ba(Tu—To) (20)
n=1+¢K, 0+ <K, 6° 13)
2 and
e’ )
A= 1+8K;‘10+§K120 (14) VR=rI—R (21)
Pr
2
¢, =1+eK, 6+ £ K, 6. (15) one obtains finally the relation for the Grashof
? 2 number

Table 2 shows values for the properties of the
second kind for water and air at T = 70°C according
to Gersten and Herwig [14]. In the present study we
have chosen as reference temperature the arithmetic
mean between the end wall temperatures

T+ Ty

Ty 2 (16a)
as well as the temperature of the cold end wall
Te="Tc. (16b)

As there is no characteristic reference velocity ug in
free convection problems, we look at the buoyancy
term. Substituting equation (12) into equation (5)
leads to |

prh’g
Nr Ur

_ iy

82
(1-p) = ”“&G&ﬁ+7&ﬁﬁ.an

This relation shows that the buoyancy term is of

_ gh3ﬁR(TH ~To)

VR

Gr (22)
which is identical with the form usually used in free
convection problems.

Similar to the properties, the unknown quantities u,
v, p and 0 were also expanded in asymptotic
expressions, using ¢ as a parameter. Hence

u=ug+eu +eu,+ (23)
v =vot+ev,+Ewy4 - (24)
p=potep +ep+ - (25)
0=00+c0,+60,+ . (26)

In the following we talk of linear theory, if expansions
(23)-(26) are broken off according to terms of O(g")
and of quadratic theory, if they are broken off accord-
ing to O(e?).

Substituting the property expansions (12)-(15) as
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well as expansions (23)-(26) in the governing equa-
tions and equating terms of like power in ¢, one
obtains at O(e%)

%*%"ﬂ @7
Gr [AzuG %z%, + Av, %ﬁ]
-~ 2y e 65;;’ 28)
Gr[A uoa—+A2 O%UE]
=—G’%%?+ A ‘;”;’wo @9
GrPr[Azuo%{z—g+Au%%°]_A2%;%‘l 6;;)20
(30)

It is easily seen that this system of differential
equations is identical with that resulting from the
Boussinesq approximation. The system at O(e') is
given in the Appendix.

With the assumption that the cavity aspect ratio 4 is
sufficiently small, the resulting systems of differential
equations at O(£%), O(¢') and O(g?) can be solved
using the asymptotic expansion method with the cav-
ity aspect ratio A as the expansion parameter.

3. ANALYTICAL SOLUTION

For two-dimensional problems one usually intro-
duces the stream function

oy
pu=, (31a)
oy
po=—A5 (31b)

which identically fulfills the continuity equation at
each order of magnitude. By eliminating the pressure
in equations (28) and (29), one obtains the vorticity
equation.

As already mentioned, one distinguishes between
two different flow regions the core region and the two
end regions close to the hot and cold end walls. For
A = 0equations (27)-(30) describe the flow in the core
region. By solving these equations with the method of
matched asymptotic expansions, some constants
appear in the solution which must be determined. This
is usually done by solving the equations for the end
region and matching this solution with that for the
core region. The equations valid in the end region are
obtained from equations (27)-(30) by stretching the
x-coordinate by the factor 47, see Cormack et al.
[10]. Cormack et al. solved the equations for the end
region numerically. However, Merker and Leal [15}
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have shown that the core solution correct to O(4%)
can be obtained without knowing the end solution in
detail.

Finally, one obtains with Ty = (T+ Tyy)/2 for the

velocity u(x, y)

TV e v )22
24 I\K,
2 1Y 2 K"Z

+e —-5 KW1+K11K’7|~’I.(’;“K'II

K, K,
+"‘—K + = (X"'l) KX‘ 1(,7'1<,1I

K,
1 2 1 2
+§ X —x+8 (3K1‘—K12)

and for the temperature 6 in the core region
f=x— é -5-8[52ili (X—xz)]
82[(3[(,%' —~K12)(ic6—3 - )—; + f;)]
(S g)

pagt O Pl 1
Vo F A S

(32)

)=

K+ 22 Ky 3K, 4K, )~ O P
Bt g, TR TR R T 56880
Kpl
x| 2K, +2-22 “2K, 4K, +3K,,
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x? x > GrPril ot 1,
X(E‘i)}* A{:m (gy“z“?’
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——-—+K K Kfanm

Ca1” Py

+4K} +K, K
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(33)
Knowing the velocity and temperature field in the
core region, the Nusselt number can be determined.
Since the lower and upper walls are adiabatic, the flow

of enthalpy and heat must be constant at every cross-
section of the cavity, hence

Nu= l /160 GrP 01d
u= Ve r Prpuc,f )dy.

With Ty = (T¢+ Ty)/2 one obtains for the Nusselt
number

(34

K, 42Grrpe?
Nu=l+e"—+——F o

24 7 362880
x| 14¢> 'k k IK"’K
£ 270 A 2KP| A
1 1., 3
+ 5K, Ko+ 5 K]~ 7K, K,
L 1K’”K 'k k
+4 m 3K,,, KR T b
n2 SK lKﬂzK
2 tiztetag te
lK K, K. K,
+§ P17 2 p1 'l|+ 6

K, 1K2 K; . 1 (K} 35
TuteteTnTn\g ) | (33)
In addition to this, we also present the solution for

the Nusselt number for TR = T instead of TR =
(Te+Tw)/2
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2%

The terms of O(e®) in equations (35) and (36) are
identical with the Boussinesq solution (equations (27)-
(30)) which has already been given by Cormack ef al.
The terms of O(¢') and O(g?) are corrections due to
the temperature-dependent properties. It is interesting
to note that no terms of O(e') show up, if the arith-
metic mean is chosen as the reference temperature.
The solutions for the velocity and temperature field
in the case Ty = T are given in the Appendix.

The results are sometimes presented by using the
property-ratio method, see Herwig [7]. But this can
only be done, in case the corrections due to the vari-
able properties are of O(e"), because only in this case
are the exponents of the property ratios independent
of the properties K, of the second kind. Because there
are no terms of O(¢g') in the relation for the Nusselt
number in the case Ty = (Ty+T)/2, this solution
cannot be presented by the property ratio method.
However, one obtains in the case T = T¢

Nu l:'h{PHﬂC:r'[A_H:I"Z[PH]"J[&E]M 37
Nug | neBupc Ac Pc Cpe

pHﬂc -1 8'2K3‘ _KPZ/KPI
.BH/)C Kp,

B A2 Gr? Pr?
"= 7362880+ 42 Gr? Pr?

181440 —Gr? Pr2 A2
ny, =

with

362880+ A2 Gr? Pr?
ny = 3n,
n,=3n,.

Subscript B means ‘Boussinesq approximation’.
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4. DISCUSSION

The results of the study are presented in Figs. 2 and
3 for a shallow cavity with aspect ratio 4 = 0.02. The
graphs show the relative deviations of the Nusselt
number from that obtained by applying the Bous-
sinesq approximation, (Nu— Nug)/Nug, vs the par-
ameter ¢ = (Ty— T¢)/Tx- The value ¢ = 0.1 means
a temperature difference of approximately 30 K
between the hot and cold wall, if the arithmetic mean
is close to the ambient temperature. Because the
Grashof number is proportional to the temperature
difference (Ty— Ty) if the cavity aspect ratio A4 is kept
constant, the Grashof number can be used instead of ¢
in Figs. 2 and 3.

Gr
0 15104 30104
003
002 |-
Nu-Nug
Nug
0.01 —
o]
o] 0,05 01

F1G. 2. Relative deviation between the Nusselt number for

constant and variable properties vs the parameter ¢ in the

case Ty = (Tc+ Ty)/2 and for 4 = 0.02: @, linear theory;
@, quadratic theory.

Gr

0 1510*
0.6 T

A =002
TR = Tc

30-10%

03

NU-NUB
Nug

- 0'3 l
0 005 01

F1G. 3. Relative deviation between the Nusselt number for

constant and variable properties vs the parameter ¢ in the case

Tr = Tc and for 4 = 0.02: @, linear theory; @, quadratic
theory.
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Figure 2 presents the results for the case
Tr = (Tc+ Ty)/2. 1t is interesting to note that the
solution obtained is correct within the framework of
the linear theory. The Nusselt numbers for water and
air are slightly increased, if the quadratic terms are
taken into account. But, this increase is rather small
and is approximately 2.5% for Gr=3x10* or
e = 0.10, respectively.

Figure 3 shows the results for the case Ty = T¢.
The curves marked @ represent the solution of the
linear theory and those marked @ represent the quad-
ratic theory. With Ty = T, the effect of the variable
properties is opposite for water and air, i.e. the Nusselt
number for water (linear theory) can be increased up
to 42% and that one for air can be decreased down
to 24%. If the quadratic terms are added, the devi-
ation of the Nusselt number for water is further
increased (up to 57%), that one for air, on the
contrary, is slightly decreased.

Summing up, the study presented shows that the
arithmetic mean temperature is a reasonable choice
for the reference temperature in the present problem.
Using this reference temperature, the Boussinesq solu-
tion is exact compared to the linear theory and is still
very good (maximum deviations less than 2.5%) with
the quadratic terms being added. Contrary to this,
the deviation between the quadratic theory and the
Boussinesq solution is rather high (up to about 50%)
and, in addition, oppositely for water and air, in case
the temperature of the cold side wall is chosen as the
reference temperature. Hence, for cavity flow prob-
lems it is suggested that the arithmetic mean tem-
perature is used as reference temperature for the vari-
able properties.
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APPENDIX A: GOVERNING EQUATION OF
oY)

Equation of continuity
du, o, 90, 09,

A-a‘“ 5‘;+AKF|§MO+KP|‘EUO=O. {A])
Equation of motion
du, du
Gr {A uo—a- + A% 5}3 @ouo a

a Uy 600 auo
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A 0 A (3 2 K‘,I

" ox ox s
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(A3)

Eguation of energy

2, 2,

00
2 ! 2
GrPr[A uﬂ_—ax +Au s +A’K gC 2T P

80, 09, 08,
+4 Kc,®0u0 x +A Vo5 3 +dv, —— ay
0, 29,
+AKP!®ODO~—~3}, +AKCPs®ovu-ay]

0 29, 70
=t 2K1‘( ox )+A2K‘ O

R 20, 2’0
32‘+K11( )+K1‘®o =L (Ad)

dy ay?

APPENDIX B: VELOCITY AND TEMPERATURE
PROFILE IN THE CORE REGION FOR T, =T

—i(4y3—6y2+2y)[1+e|:—1& +x{§2—K -k }:l
24 2 K, mT

2 Kiz K, 2
+e ?+x E;*K1|—K,11K‘|—K,ll
)

K, 3 K, 3k
2y Zgr_ T e
2 + 2K,il 2 2K KA, } (Bl)

Kil Kfz KAZ
Q= x+sT(x—xz)+a’ -—2-(x3—x2)+ ~6—(x——x3)

+AzG'Pr(£_Zt+Zju I)

24 \5 273760
GrPriy* y* y 1

A? AR AN AR
e [24- 572776

K K K K, —3K;
XKy +x P|+E;" n 3Ky + K,
Gr2 pr? K, 3
_-362830<Km+E;—Km“zKix‘i_EKfn
GrPriy® y* ¥y 1
3 242 yo_r .y 21
X {x x)]-i-ﬁA[:M (5 2+3 &

5., 3. 7 7
b g {‘xﬂ(?K% - EKA:mEKPIKll + EK'IIKM _K'”Kp‘

K, 3 7
_K q,"T+§Kp2—§ch,Kl,+Kch’|

4l

K"’X ko Kn 9_,. 3
+Fm ey~ oy Cﬂ+ 5 +x —~2‘Kl|+§Kp‘Kll

3K, 3 3 K K,
*ag KKK+ 3K K ey



1832

G. P. MerkER and St. MEY

Gripr | | K., 2 t ., 1/K)} 2
m{(x —x)(4K,,lK,1|+4K—MK‘I—4K,,IK,1| +2K, K, ~ 5K~ 3K}, —3 %) 3K
i
20 2 4 4 K K
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1 P
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CONVECTION NATURELLE DANS UNE CAVITE PEU PROFONDE—
1. FLUIDE NEWTONIEN

Résumé—On étude analytiquement ’effet des propriétés variables sur la convection naturelle dans une
cavité peu profonde avec parois d’extrémité chauffées différemment. Par rapport aux résultats de la théorie
linéaire, ’approximation de Boussinesq usuellement appliquée est exacte si les propriétés du fluide sont
prises a la température moyenne arithmétique entre celles des parois chaude et froide. Pour le domaine de
variation considéré la déviation entre les résultats pour la théorie quadratique et ceux pour 'approximation
de Boussinesq est inférieure a 2,5% environ. On montre que la moyenne arithmétique est un choix
raisonnable. Avec cette température de référence, I'approximation de Boussinesq conduit a des résultats
suffisamment précis.

FREIE KONVEKTION IN EINEM FLACHEN BEHALTER MIT VARIABLEN
STOFFWERTEN—I1. NEWTONSCHES FLUID

Zusammenfassung—Der EinfluBl variabler Stoffwerte aud die freie Konvektion in einem flachen Behilter
mit unterschiedlich beheizten Stirnflichen wird analytisch untersucht. Wie die Ergebnisse zeigen, liefert
die Boussinesq-Approximation im Vergleich mit der linearen Theorie eine exakte Losung, wenn die
arithmetische Mitteltemperatur zwischen heiBler und kalter Stirnfliche als Referenztemperatur verwendet
wird. Im untersuchten Parameter-Bereich weicht die Boussinesq-Lésung um maximal 2.5% von der
“exakten Losung”, d.h. von der gquadratischen Theorie ad. Damit its gezeigt, daB die arithmetische
Mittletemperatur eine sinnvolle Bezugstemperatur fiir die Stoffwerte ist. Mit dieser Bezugstemperatur
liefert die Boussinesq-Approximation hinreichend genaue Ergebnisse.

ECTECTBEHHASI KOHBEKI[US C YYETOM NEPEMEHHOCTH CBOVICTB B MEJIKON
MOJIOCTH—1. HBIOTOHOBCKAS XXKUAKOCTb

Annorauns—IIpoBeieHO aHAJIMTHYECKOE UCCJENOBAHHME BIIMSHHUA NMEPEMEHHBIX CBOMCTB Ha €CTECTBEH-
HYIO KOHBEKIMIO B MEJIKOH MOJIOCTH, TOPLEBLIE CTEHKH KOTOPO#l NOAXEPXKHUBAIOTCA NPH PA3HOH Temile-
patype. PesynbTaTel IS JIMHEHHOH TeMIepaTypHOH 3aBHCHMOCTH TOYHO COBNAZAIOT C OOBIMHO
npUMeHAeMBIM NpHOIHKeHHeM ByccHHecka, ecsii CBOMCTBa XUAKOCTH GepyTca NpH 3HAYEHUH TeMIepa-
Typbl, KOTOPOE PaBHO cpelHe-apHbMeTHHECKOH TeMnepaType. B paccmMaTpnBaeMoM nnanazoHe H3MeHe-
HAS [apaMETPOB PpACXOXKAEHHS MEXOY pe3yabTaTaMM, [OJMY4YaeMbIMH MUIS TEMIEpaTypHOM
3aBUCUMOCTH, B npubmixenueM Byccunecka cocraBnser Mmenee 2,5%. ITokazaHo, uyrto npubnmxenue
Byccunecka npu BeiGope cpeqHeapHMeTHYECKOH TEMIEPATYPhl B Ka4eCTBE XapaKTEPHOH TEMIICPATyphI
[AeT AOCTATOYHO TOYHBIE Pe3ybTaThl.
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